2018 Esri Partner Conference and Developer Summit – Part 1

The timing worked superbly, like the best Swiss clockwork: A few days before winter made a comeback in Switzerland, I sat in a plane to Los Angeles. Nevermind that California also had slightly cooler temperatures than usual – it was definitely preferable over the polar cold air masses that firmly occupied Switzerland. Even the place names felt evocative: Santa Cruz, Big Sur, and San Francisco. For two weeks I would cruise California, before making my way back to L.A. and then Palm Springs in order to attend the 2018 Esri Partner Conference and Developer Summit together with my colleague, Nicole Sulzberger, in order to gather the most recent news for our clients and to network with Esri employees and partners from around the world. In what follows, we describe what we learned during the two Esri events: the latest news about developments at Esri.

The Science of Where

The Science of Where is Esri’s tagline since 2017. In the plenary session, Jack Dangermond, the president of Esri, made clear what it summarizes: The world is seeing many big challenges. Loss in biodiversity, competition for resources, increased mobility demands, demographic shifts, and climate change, to name a few. The science of where helps to address all of these and more. It is, in Esri’s understanding, the combination of the competence of geography (process knowledge, spatial thinking and reasoning) and the technology around GIS. Applying the science of where helps answering spatial questions with:

  • increased efficiency to save resources
  • better analysis to actually understand what is going on, and
  • better communication to foster good decisions

All this rings true for me as a geographer and in our team we agreed that this vision matches well with our own.

What Esri showed during the Partner Conference and Developer Summit can be linked very well to at least one, often several, of these three promises, for example:

  • increased efficiency around working with big data, on desktop or mobile, or administrating one’s geodata infrastructure,
  • better analysis capabilities within (e.g., ArcGIS Insights, GeoAnalytics Server) and around Esri’s core products (e.g., GeoAI DSVM, R-ArcGIS-Bridge, Jupyter Notebooks), and
  • better communication through effective visualization (e.g. on mobile using the ArcGIS Javascript API 4.x, using the AR or VR mode and their innovative user experience, or leveraging the computational and graphics performance of game engines for visualizing 3D content)

Select Highlights

ArcGIS API for JavaScript

The developments of the JavaScript API 4.x has been a big topic in this years Developer Summit. The WebApp Builder and the ArcGIS Online and ArcGIS Enterprise Map Viewer are both moving to the ArcGIS JavaScript API 4.x. There are, for example, new out-of-the-box responsive widgets and an enhanced search widget. Feature Layers now support loading large amounts of features for visualization and analysis with improved client-side Web GL-based rendering, improved Feature Service capabilities, and the possibility to build a Feature Layer from in-memory data (such as a CSV file with coordinates that is loaded into a map using drag-and-drop). Finally, in JavaScript API 4.x, the geometry engine is available locally, thus you can get faster responses for geometry operations. This enables us to implement locally (and thus with immediate response), for example, snapping, simple topology checks, interactively calculating areas when cutting polygons and much more.

 

Augmented and Virtual Reality

Augmented (AR) and Virtual Reality (VR) functionality has been built into the ArcGIS Runtime SDK. The AR mode gives a transparent background to a scene so that it can be shown on top of a device’s camera feed. The VR mode allows displaying a scene in stereo and an appropriate VR user interface. There is an Esri Labs ArcGIS 360 VR app for the Samsung Gear VR headset on Oculus that highlights the new VR capabilites of Esri software. Further, Esri showed their tabletop UX for planning: there, a 3D scene (from e.g. City Engine) is displayed on a virtual tabletop. Viewers can virtually gather around the table and interact with the model, e.g. selecting different planning scenarios for visualization. The viewers themselves can be in remote locations. Upon viewing the scene they can also see other viewers and what they are looking at. Finally, any viewer can teleport into the scene itself and look at the model from different in-scene vantage points.

The following video from the plenary sessions highlights some AR/VR capabilities of ArcGIS Runtime (jump to 4:00 for seeing first a VR, then an AR demo):

 

3D and Indoors GIS

Esri 3D Web Scenes will be consumable on mobile devices, using a responsive interface. Features from 3D scene layers are quickly streamed to the device. Users can use advanced measurement tools to, for example, measure plan surface areas in a 3D scene:

 

Some powerful 3D features in native apps such as interactive line-of-sight analysis have been shown in another plenary session, the video of which is available from Esri.

Further, 3D scenes support a new rendering mode that gives building edges a „sketch“ look. This is interesting, for example, for visualization of planned projects where you do not yet want to convey a very crisp and precise impression of a provisionally planned scenario.

Since the previous Partner Conference and Developer Summit, ArcGIS Indoors has matured further. This new suite of tools comprises ArcGIS Indoors Desktop (built on top of ArcGIS Pro if I’m not mistaken), the ArcGIS Indoors Web Viewer, and the ArcGIS Indoors Mobile App. They in turn support data preparation and map design, simple editing and dashboard functionality, and indoor-navigation using device sensors through the indoors positioning feed.

ArcGIS Indoors: Esri Campus Viewer (http://3dcampus.arcgis.com/EsriCampusViewer/app)

When you zoom out from your building(s) view, the transition into geographic space and navigation by GPS only should be seamless. The navigation functionality relies on an appropriate 3D network dataset (somewhat in contrast to our own pedestrian modeling tool Walkalytics).

Click through to Part 2 of this review.

 

Fitting the Alps into an App

Recently, we faced a peculiar dilemma: We wanted to provide a mobile app prototype with an attractive basemap for overview purposes. Our prototype app is focused on Switzerland and we wanted (almost needed, really) to incorporate elevation information in the form of at least a shaded relief. For the intent of this blog post it suffices to say that we wanted to show some real-time position on top of the basemap. The app was geared towards an international audience that doesn’t necessarily have a mobile data plan nor WiFi access at the time when they want to use the app. What gives?

Since our app audience wouldn’t have the opportunity to download basemap data on the go, we thought further: But a) we deemed requiring an additional large (WiFi) download before the first usage as a very unattractive option. On the other hand, we b) didn’t want to bloat the app download by packaging a huge amount of basemap data with it either. A shaded relief at a sensible, non-pixelated resolution wouldn’t come cheap in terms of payload though.

Vector tiles

Thankfully, the Esri ArcGIS Runtime SDK for Android  and ArcGIS Runtime SDK for iOS (Quartz Releases) offered a way out of our dilemma: since August 2015 Beta versions of the SDKs offer the capability of rendering vector base maps. The first production releases of these Quartz SDKs will be released in November 2016, Quartz Runtime SDKs for other platforms will follow soon (Esri ArcGIS Runtime SDKs). In a stroke of insight we came up with the plan to simply incorporate a compact vector version of a shaded relief map.

<audible gasp>

Actually, it’s not as crazy as it sounds: we were pretty sure we could discretize a shaded relief into a handful of classes, generalize it thoroughly (really thoroughly!) and arrive at something attractive and functional and smaller than tiles of a raster shaded relief.

Slimming down the data

The actual process involved an EBP-owned digital elevation model (as the official one is not yet open data, unfortunately, ahem). We computed a shaded relief and after several tries arrived at a promising discretization into merely 5 classes. Additionally, we computed and vectorized 3 elevation intervals, mainly to give the Swiss lowlands some additional elevation information. The workflow involved a mixture of tools: mainly ArcGIS for Desktop, choice functions from ET GeoWizard as well as a hint of FME. The final vector shaded relief comprises a total of 13,714 individual features after rigorous generalization of both spurious features and vertices (we had started out at 27,237).

Styling options

See the results for yourself. A coloured version of the basemap:

And with a set of freely available geodata overlaid (click for larger image):

This is how this version looks on a mobile device (click for large image; iPad Air template file CC-BY Netspy):

Besides these more colorful versions, you can generate a neutral basemap in gray shades to give more attention to the data displayed on it. A vector tiles package containing the basemap below is around 14 MB and thus suitable to be packaged together with the initial app download. In our conservative estimate, an identical image tiles basemap would – at least – multiply this value by 10.

Vectorized relief map: neutral colors for more attention on project data added on top
Vectorized relief map: neutral colors allow for more attention to the data we will put on it in the app

Good usability makes happy users

Not a perfect solution, but it serves our purposes for the prototype app really well and makes use of the latest technologies available from Esri for a light app payload.
Furthermore, vector data looks good at all zoom levels, not only at certain levels which the tiles are generated for, as you experience it with image tiles. As a bonus, the zoom and pan interactions are much smoother with vector tiles compared to image tiles.

With a bit more time on our hands we could certainly refine the process further and iron out remaining kinks. Let us know if you face similar challenges around app development, data munging or user interfaces and would welcome some innovative thinking from our team of analysts and developers. Get in touch!

Example projects: Military and meteo data, geoinformation aggregation and process consulting

In the „projects“ series we occasionally highlight some of our projects. Today, these projects encompass a geodata portal for the Swiss Army, a metadata portal for meteorologists, a cloud-based aggregation infrastructure for geoinformation and a process support for a biodiversity research team.

Geographic information portal for the Swiss Army

The Swiss Army was looking to standardise its use of geodata. EBP was commissioned to help the Army develop a geographic information portal.

The so-called „Mil User Platform“ is to be realised on the basis of the Swiss Federal Office of Topography’s (swisstopo) „Federal Administration User Platform“.

EBP supported the Military Geographic Information Service of the Armed Forces Joint Staff in the conception, initiation and installation phases of the Mil User Platform project. We manage the relevant business analyses and also model the requirements to be met by the GeoInfo Portal V in SPARX Enterprise Architect.

→ find out more

 

OSCAR: Metadata for meteorology – convenient global access

© MeteoSchweiz

To manage metadata, the World Meteorological Organization (WMO) is setting up what is known as the Observing Systems Capability And Review tool (OSCAR). This tool promises to facilitate the proper use of meteorological measurement data, provide a global overview of the available weather stations; and help facilitate the task the WMO member states have of administering these stations.

Working closely with the WMO, MeteoSwiss is developing and operating the OSCAR surface module. EBP helps MeteoSwiss realise the project using the HERMES-5 methodology.

→ find out more

 

KKGEO: Operation of the cloud-based aggregation infrastructure

The Office of the Conference of Cantonal Geoinformation Service Providers (KKGEO) has established an aggregation infrastructure for the Switzerland-wide publication of harmonised cantonal spatial data: geodienste.ch.

Working in the capacity of a project manager, EBP has designed and realised the scalable operation of the portal. The software components used for the system are based on open-source technologies and were developed by Sourcepole AG.

Working in close cooperation with the cloud-service provider CloudSigma, we set up the infrastructure for the application’s operation in a Switzerland-based computing centre. Thanks to the use of dynamic scaling, our solution can react flexibly to load and request volume fluctuations.

→ find out more

 

Process consulting and implementation of the ALL-EMA database

In the context of its ALL-EMA long-term study, the Swiss research institute Agroscope is gaining a better understanding of biodiversity in Switzerland by gathering field data on flora and habitat types. Before launching the first season of fieldwork, Agroscope wanted to improve its ALL-EMA data system.

EBP supported Agroscope in migrating its ALL-EMA project infrastructure to a comprehensive system with a central repository and efficient processes for data management and analysis.

The scope of the development included tools for importing field data, sampling design and exporting derived data in relevant exchange formats. The ALL-EMA architecture, data sources, workflows, responsibilities and IT security measures were recorded in a system manual and data documentations.

→ find out more

Projektbeispiele: Meteodaten, Aggregation kantonaler Geodaten und Prozessberatung bei Agroscope

In der Serie „Projekte“ möchten wir Ihnen in unregelmässigem Rhythmus einige Highlights aus der Arbeit von EBP Informatik vorstellen. Heute drehen sich die vorgestellten Projekte um die Erstellung eines Metadatenportals für weltweite Meteodaten, den Betrieb der cloudbasierten Aggregationsinfrastruktur für kantonale Geoinformationen und die Prozessunterstützung im ALL-EMA-Biodiversitätsprojekt von Agroscope.

OSCAR: Metadaten für die Meteorologie – weltweit einfach zugänglich

© MeteoSchweiz

Die MeteoSchweiz entwickelt in enger Zusammenarbeit mit der World Meteorological Organization (WMO) einen Teil des Portals OSCAR für die Verwaltung und Analyse von Metadaten zu meteorologischen Messungen.

EBP unterstützte MeteoSchweiz im Projektmanagement, bei der Spezifizierung der Anforderungen und bei der Evaluation der WTO-Ausschreibung für einen Entwicklungspartner.

→ mehr Informationen

 

KKGEO: Systembetrieb der Aggregationsinfrastruktur in der Cloud

Die Konferenz der kantonalen Geoinformationsstellen (KKGEO) hat ein Aggregationsportal zur schweizweiten Publikation harmonisierter räumlicher Daten der Kantone in Form von Download- und Darstellungsdiensten aufgebaut.

EBP hat in der Projektleitung den skalierbaren Betrieb dieses Portals, www.geodienste.ch, konzipiert und basierend auf Softwarekomponenten von Sourcepole realisiert. Durch die dynamische Skalierung kann unsere Lösung innert kürzester Zeit auf Lastschwankungen reagieren.

→ mehr Informationen

 

Prozessberatung und Implementation ALL-EMA-Datenbank

Die Forschungsanstalt Agroscope gewinnt in der Langzeitstudie ALL-EMA anhand von in Feldarbeit erhobenen Daten zu Lebensraumtypen und Pflanzenarten Erkenntnisse zur Biodiversität in der Schweiz.

EBP unterstützt Agroscope vor der Lancierung der ersten Feldarbeitssaison bei der Überführung der Infrastruktur des Projekts ALL-EMA in ein Gesamtsystem mit einer zentralen Ablage und effizienten Prozessen für die Datenbewirtschaftung und Datenanalyse.

→ mehr Informationen

Projektbeispiele: Zürcher Fruchtfolgeflächen, Patrouille des Glaciers und Geodaten für die Armee

In der Serie „Projekte“ möchten wir Ihnen in unregelmässigem Rhythmus einige Highlights aus der Arbeit von EBP Informatik vorstellen. Heute drehen sich die vorgestellten Projekte um die Nachführung von Daten über Fruchtfolgeflächen, die bekannte Patrouille des Glaciers und um die Bereitstellung von Geoinformationen für die Schweizer Armee.

F3N: Nachführung der Fruchtfolgeflächen-Karte des Kantons Zürich

© Fachstelle Bodenschutz des Kantons Zürich
© Fachstelle Bodenschutz des Kantons Zürich

Die Fachstelle Bodenschutz des Kantons Zürich hält die Daten zum qualitativ besten ackerfähigen Kulturland, den sogenannten, Fruchtfolgeflächen, aktuell.

Wir haben für den Kanton Zürich ein Nachführungskonzept entwickelt und darauf aufbauend die Applikation F3N umgesetzt.

F3N verbessert die Effizienz des Nachführungsprozesses und erlaubt daneben auch stets detaillierte Aussagen zu Bestand und Veränderungen der Fruchtfolgeflächen im Kanton.

→ mehr Informationen

 

Anmelde- und Zeitmessungsverfahren für die Patrouille des Glaciers

© Patrouille des Glaciers
© Patrouille des Glaciers

Die Patrouille des Glaciers ist ein internationaler Skialpinismus-Wettkampf der Schweizer Armee, an welchem auch zivile Patrouillen teilnehmen dürfen. Sie gilt als härtester Teamwettkampf der Welt und zieht alle zwei Jahre über 5’000 Teilnehmende an.

Ernst Basler + Partner ist zusammen mit der Firma race result verantwortlich für die Bereitstellung des Anmelde- und Zeiterfassungssystems für den Wettkampf im Jahr 2016 (und optional auch im Jahr 2018).

→ mehr Informationen

 

Geoinformationsportal für die Schweizer Armee

Die Schweizer Armee will die Nutzung von Geoinformationen mit der Realisierung einer „Nutzungsplattform Mil“ vereinfachen.

Ernst Basler + Partner unterstützt die Armee unter anderem bei der Konzeption eines Geoinformationsportals, welches mit klassifizierten Daten und mit Daten von weltweiter Ausdehnung umgehen können muss.

→ mehr Informationen

Example projects: Project platforms, geodata for the DFA and automated data import

In the „projects“ series we would like to highlight from time to time some projects that our company conducted. Today, these projects encompass online collaboration platforms for projects, geodata infrastructures and services, and spatial ETL using FME.

Jinsha: Collaboration platform for an international project team

As part of an international team, our experts investigate the influence of climate change on water management in China. In order to support the project team, EBP built a collaboration platform based on Microsoft Sharepoint.

The Sharepoint platforms facilitates the communication between team members and project documentation, and simplifies project management. At any time, all team members can access common assets and documents can be edited collaboratively and simultaneously.

→ find out more

 

Project initiation of the Swiss Federal Department of Foreign Affairs Geodata Infrastructure

The Swiss Federal Department of Foreign Affairs (FDFA) requires a networked information landscape in order fulfill its tasks. Geographic information and data are an essential part of this information landscape for operational awareness. EBP assisted the FDFA in the initiation phase of the project „Geodata Infrastructure FDFE“ according to the federal standard for project management, Hermes 5.

We derived the requirements for such a system using interviews and stakeholder workshops. In a Hermes study we documented the situation analysis, aims, requirements and approaches, suggested and described various solutions and formulated a recommendation.

→ find out more

 

Cadastral surveying: Data import using FME

The geodata of the cadastral survey in the Canton of Schwyz is managed by the municipalities. The canton publishes these data centrally. In order to facilitate the canton’s task, we assisted Schwy in developping an automated import of Interlis data into the cantonal geodata infrastructure (Oracle and PostGIS) using FME as the state-of-the-art ETL tool.

Using our tool, the Canton of Schwyz can import survey data at the press of a button. The data is then served to the authorities and the public, e.g. in the cantonal WebGIS, from the central databases.

→ find out more

Projektbeispiele: Projektplattform in China, Geodaten im EDA und AV-Interlis in Schwyz

In der Serie „Projekte“ möchten wir Ihnen in unregelmässigem Rhythmus einige Highlights aus der Arbeit von EBP Informatik vorstellen. Heute drehen sich die vorgestellten Projekte um die Themen kollaborative Projektplattformen, Geodateninfrastruktur und Spatial ETL mit FME.

Jinsha: Projektplattform für ein internationales Team

Unsere Expertinnen und Experten untersuchen in einem internationalen Projektteam in China den Einfluss des Klimawandels auf das Wasser-Management. EBP hat zur Unterstützung des Vorhabens eine kollaborative Projektplattform auf Basis von Microsoft Sharepoint aufgebaut.

Die Sharepoint-Plattform dient dem Austausch, der Projektdokumentation und der Vereinfachung des Projektmanagements. Alle Beteiligten sind stets auf demselben Informationsstand und Dokumente können von mehreren Personen gleichzeitig bearbeitet werden.

→ mehr Informationen

 

Initialisierung der Geodateninfrastruktur des Eidgenössischen Departements für auswärtige Angelegenheiten

Das Eidgenössische Departement für auswärtige Angelegenheiten (EDA) benötigt für die Erfüllung seiner Aufgaben eine vernetzte Informationslandschaft. Geoinformationen sind ein essentieller Teil davon. EBP begleitete das EDA bei der Initialisierung des Projekts „Geodateninfrastruktur EDA“ gemäss Hermes 5-Methodik.

Im Rahmen von Interviews und Workshops ermittelten wir die Bedürfnisse des EDA an die geplante GDI. In einer Studie nach Hermes 5 haben wir Situationsanalyse, Ziele, Anforderungen und Lösungen dokumentiert, technologieneutral Varianten vorgeschlagen und schliesslich eine Empfehlung abgegeben.

→ mehr Informationen

 

Amtliche Vermessung: Datenimport mit FME

Die Geodaten der amtlichen Vermessung (AV) werden im Kanton Schwyz gemeindeweise bewirtschaftet. Der Kanton macht diese AV-Daten dann zentral verfügbar. Um dem Kanton Schwyz diese Aufgabe zu erleichtern, hat EBP den Import von Interlis-Daten der AV in die kantonale Geodateninfrastruktur mit dem state-of-the-art ETL-Werkzeug FME umgesetzt.

Die im Interlis-Format vorliegenden AV-Daten können so per Knopfdruck in die kantonalen Geodatenbanken (ORACLE und PostGIS) importiert werden. Mit diesen Datenbanken unterstützt der Kanton Schwyz den internen und öffentlichen Gebrauch der Vermessungsdaten und die Anzeige der Daten im kantonalen WebGIS.

→ mehr Informationen

Does Web Mercator imply erroneous geospatial positioning?

Web Mercator nowadays is probably the most frequently used map projection. Don’t worry if you have never heard about it though. This new projection is used by Google Maps, Bing Maps by Microsoft, ArcGIS Online by Esri and the OpenLayers community. It became the standard of displaying geographic data on the web.

There are rumours that this standard is bad because it implies tremendous geospatial positioning errors. The Office of Geomatics at the U.S. National Geospatial-Intelligence Agency (NGA) puts the cost of using Web Mercator as follows:

up to 40.000 meters of erroneous geospatial positioning

So, what is wrong with Web Mercator?

Let’s take a step back: A map projection solves the problem of representing the 3D earth on a 2D plane, i.e. on a paper map or on a computer screen. The transformation from 3D to 2D involves distortions in one way or another. Of course, simply superimposing the outlines of Great Britain in two different projections (as the NGA did in the publication Implementation Practice Web Mercator Map Projection) results in shifts, see NGA’s figure below. And yes, the outlines do not match.

Comparison-Mercator-WebMercator

Distortions are what map projections are about! We therefore cannot talk about positioning errors when comparing different map projections such as the siblings Mercator and Web Mercator.

Given the fact that we have to live with distortions on maps we have to choose a map projection that suits a given purpose well. A map projection is therefore more or less appropriate for depicting a particular spatial fact or for accomplishing a specific task in space. Thus, a projection is neither good nor bad. Rather, its suitability has to be judged with the purpose in mind.

 

Alice had no idea what Latitude was, nor Longitude either, but thought they were nice grand words to say.

These are nice grand words indeed! However, other than Lewis Caroll’s Alice in the Wonderland we must have an idea at least what latitude means when talking about map projections. There are many latitudes to choose from:

On the sphere we know the spherical latitude. It is the angle between the normal to the sphere and the equatorial plane. On the ellipsoid with the two semi axis a and b (see figure below) we distinguish the geodetic latitude Φ or φ. This is the angle between the normal to the ellipsoid and the equatorial plane. The geocentric latitude γ is the angle between the radius (from the centre to the point on the ellipsoid) and the equatorial plane. Finally, there is the reduced latitude β that is used when transforming latitudes from sphere to ellipsoid.

Latitudes

When talking about latitude or geographic latitude we generally refer to the geodetic latitude. What the above figure also shows is that the definition of the latitude must be accompanied with the definition of an ellipsoid (e.g., semi-major axis and eccentricity).

On top of knowing the reference ellipsoid we must also know the geodetic datum that defines the position and orientation of the ellipsoid in relation to the geoid. When somebody uses WGS84 coordinates this most probably means

  1. The data is in geographic coordinates: geodetic latitude φ and longitude λ
  2. The coordinates refer to the WGS84 ellipsoid
  3. The ellipsoid is positioned and orientated relative to the geoid according the WGS84 datum

We now know the inputs, geodetic latitude φ and geodetic longitude λ, to our equation. Let’s examine the equation itself, the (Web) Mercator projection. There is a difference in how the vertical coordinate value (northing) is computed:

Northing-Formulas

where:

a = semi-major axis of ellipsoid

e = ellipsoid eccentricity

φ = geodetic latitude a.k.a. geographic latitude

As the formulas show, Web Mercator simplifies the computation of northing considerably. In fact, it uses the equation for the sphere in combination with a sphere radius corresponding to the semi-major axis of the WGS84 ellipsoid. This simplification speeds up the projection computation.

Thus, when you require a projection that covers the entire globe seamlessly, Web Mercator is appropriate when you are interested in fast coordinate transformations. On the other hand, when your map needs to be conformal Mercator is your choice. I think it was a smart idea to simplify Mercator for web mapping purposes into Web Mercator.

Perhaps you noted that we didn’t talk about elevations. That’s another tricky story. Would you believe that Lake Constance has three different mean sea levels? I will post about that another time.

If you found this analysis interesting: The performance of in-browser translation enginges keeps getting better. Thus, consider subscribing to our RSS feed that features all our articles (also the ones in German). If you are only interested in English articles, you may want to subscribe to our custom RSS feed for articles in English. We’d be glad to welcome you in our community!

Story Maps for Switzerland

What Story Maps are and why simplicity matters I have already explained in my previous blogpost „Storytelling with maps „. Now it’s about designing good Story Maps with the Esri framework and data provided by the Swiss Geoportal geo.admin.ch. My Story Map „Bat watching in Zurich“, the main example used in this blogpost, has been chosen as a runner up in the Esri storytelling with Maps contest 2014.

Connect with the Swiss audience

Esri publish their Story Map basemaps in the (Pseudo) WGS84 projection and the style of the maps is very different from what the Swiss population is used to seeing when they look at a map. Especially in the area of planning, people in Switzerland are used being presented with plans based on the acclaimed maps from Swisstopo, in the Swiss projection system. Thus, when for example a rebuilding proposal or an infrastructure project is presented to them using the ArcGIS Online basemaps (or Google’s, by the way), it might be harder for them to connect with the topic at hand. Certainly, despite their abundance Esri (and Google) basemaps fail to convey the same sense of authoritative (official) mapping by e.g. a federal department or office.

Planning area in ArcGIS Online:

And with an official Swisstopo map as a backdrop:

As part of their base data and API strategy, the geoadmin portal offers Swisstopo maps as a WMTS services you can use in your Story Map described here. However, since the process is not very intuitive, I’ll explain it how to use them with the ArcGIS Online map editor:

Once you’ve placed your data on the map in the ArcGIS Online Editor according to the standard Story Map production workflow, Esri cannot reproject it with a proper transformation anymore, so you need to make sure that your basemap is in the Swiss projection system (CH 1903 LV03, EPSG:21781, also known as Swissgrid) before you add data to it. Very recently, Esri has licensed the WMTS services of geoadmin, which means that from now on you can add the geoadmin WMTS services straight forward to the ArcGIS Online map editor:

  1. Define a new basemap by clicking on “Add Layer from Web”
  2. Define the Url https://wmts.geo.admin.ch and make sure that you are using the https url, otherwise the map imagery might be hidden (dependent on your browser and if you are logged in or not)
  3. Choose your layer: Karte SW (black and white basemap), Karte farbig (coloured basemap) and  SWISSIMAGE (satellite imagery) are the obvious options, but there is other useful stuff, like SwissALTI3D Reliefschattierung and Karte swissTLM which I quite like. The layers are documented here.
  4. Tick the checkbox “Use as basemap” so the Swiss projection system will be used, and click on “Add Layer”

Now you have a map with the Swiss projection system, and can start creating features on top of a Swiss basemap with the standard map editor workflow.

Design Simple Swiss maps

Esri’s statement about Story Maps is, that basemaps should provide context, and not be a competition, what I completely agree with. Satellite imagery looks great, I can spend hours looking at it, but for your Story Map the details lure the users away from your content. ArcGIS Online is providing a very nice background map “Light Gray Canvas”, a simple gray backdrop which can be used nicely for promoting your information and make your content more important. With the geoadmin WMTS you can get into a similar direction. I quite like to use the black and white background map, and put the layers with the information on top, which I find useful for the topic I want to communicate. The geoadmin WMTS provides layers like water or forest as separate layers, so just add them to the map with a transparency. geoadmin WMTS “Karte farbig” providing a coloured map created by Swisstopo:

And now – less distracting – geoadmin WMTS “Karte SW” from Swisstopo with forests (“REN Wald”) and waterways/lakes (“REN Fliessgewässer/Seen”) – the habitat of bats – as half transparent layers on top:

The Story Map showing bats recorded in Zurich – the background map – as only in black and white – is not distracting the user, and the heatmap with the bat records is displayed very clearly on top:

The geoadmin WMTS and WMS Services offer quite a good choice of layers you can use as a backdrop to your data, just have a look.

If you have got any further questions about using geoadmin data with the Esri ArcGIS Online and Esri Story Maps, please do not hesitate to contact me. I am happy to help, and am as well curious about your ideas how to design Story Maps.

 

Geschichten erzählen mit Karten

Vor einigen Wochen hat ein Team von Ernst Basler + Partner am Schweizer GeoSummit in Bern teilgenommen. Unter anderem haben wir dabei zusammen mit David Oesch von der Swisstopo einen Vortrag über sogenannte Story Maps gehalten.

Was sind diese Story Maps?

Story Maps sind einfachste Webapps, welche intelligente Webkarten mit Text, Fotos und anderen Multimedia-Inhalten kombinieren um eine Geschichte zu erzählen bzw. Inhalte zu vermitteln (Definition von Lindemann). Verglichen mit klassischen Kartenportalen im Internet sind Story Maps viel einfacher sowie intuitiv und ohne Vorwissen über Karten oder gar GIS zu nutzen. Mit den Story Map-Vorlagen von Esri ist denn auch die Erstellung solcher Karten nicht sonderlich schwierig.

„Simplicity is the ultimate sophistication“

Ob dieser Satz nun von William Gaddis, Steve Jobs oder Leonardo da Vinci stammt: er stimmt auf jeden Fall für Story Maps. Generell machen gemäss Lindemann folgende Kriterien eine gute Story Map aus:

  • Einfachheit
  • direkte Ansprache des Publikums
  • wirkt anziehend auf die Nutzerin, den Nutzer
  • die User-Experience unterstütz die vermittelte Geschichte
  • gute Kartographie und gutes Webdesign

Anders herum gedacht können Sie sich auch die sehr interessante und unterhaltsame Serie Why Map Portals Don’t Work von Brian Timoney anschauen: quasi eine Definition von Story Maps ex negativo.

Story Maps für die öffentliche Kommunikation

Über die letzten Jahre haben sich verschiedene Anbieter von Story Map-Technologie und -Vorlagen etabliert. Zwei davon, nämlich das Schweizerische Bundesgeodatenportal und Esri haben wir in unserem Vortrag vertieft behandelt. Als Ingenieur- und Beratungsfirma waren wir in unserem Beispiel sehr daran interessiert, wie Story Maps eingesetzt werden können, um die Öffentlichkeit über zum Beispiel ein grosses Infrastrukturvorhaben zu informieren und so die politische Partizipation zu unterstützen.

Sie können sich unsere Vortragsfolien auf Slideshare anschauen oder herunterladen oder sich diese gleich hier zu Gemüte führen:

Bei Fragen zu Story Maps können Sie uns gerne kontaktieren: Nicole Sulzberger oder Ralph Straumann.


Jeremiah Lindemann: StoryMaps — Using ArcGIS as a Communications Medium. Esri User Conference 2013, Technical Session